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(1) (10 pts) (a) State the Cauchy-Riemann equations.
Solution:
Uy = Vg, Up = — Uy

(b) Let f(z,y) be a complex-valued function on the complex plane. Show that if
0f /0y = 0 for all z and y then f is constant.

Solution:

fy = 0 so f=u(x,y) + iv(x,y) then u, = v, = 0. By C-R, also v, = u, = 0 This
implise f = const because 0f /0x = 0f /0y = 0.



(2) (15 pts) Use the Cauchy integral formula to compute

/Z|:2 (z — 1()1(22 — )2

The line integral is around a circle of radius 2 and center 0 in the complex plane.
Solution:
By the Cauchy integral formula, this is

1/(1—i)?




(3) (15 pts) 1

(a) (8 points) Find the Laurent series of oz around 0. What it its radius of

convergence ? Solution:

1/(z+1)* = —d/dz(1/(1 + 2))
1/1+2)=1—z2+22—23+...
1/(1+2)?=1-224+32>—...
Radius of convergence 1.
(b) (7 pts) Find the Laurent series of == around 11. What is its radius of conver-

gence?
Solution:

1(z4+1) =1/(z—1+2) = (1/2)1/(1+2/(z—1)) = (1/2)(1 = 2/(z — 1) + (2/(z — 1)?) — ...

The radius of convergence is 1.



(4) (15 pts)
Compute the integral
21— z)"dz
v
where m is a nonnegative integer and n is an integer. The curve 7 is a circle of radius

2 and center 0 in the complex plane.

Solution: .
(1—2)"= Z(mchoosek)(—z)k
k=0
/z"(l —2)"dz = Z(mchoosek}(—l)kz’”"dz
g k=0
This is only nonzero if k+mn = —1, in which case the integral is 27i. So the answer

Is
2mi(mchoosen — 1).



(5) (15 pts) (a) Use the Cauchy residue theorem to compute the integral

1
/v TR ErS

Here ~ is a circle of radius 2 and center 0 in the complex plane.
Solution: This integral is

/f(z)dz = QWZRGS(Z =b)(f)

The function f has poles at 1, ¢ and —i. ¢ and —¢ are simple poles so the residue of f
at i is 1/((¢ — 1)%(2¢)) while the residue of f at —i is 1/(—i — 1)*(—21¢). The residue
at 1is A/(1) where h(z) = 22 +1s0 I/(1) = 2.

Hence the residue of f at 1 is 2.

So the integral is (2 + 1/((z — 1)%(24)) + 1/((z — 1)*(—2i))

The second term is 1. The third term is its complex conjugate, so also 1.




(6) (15 pts)

cos(z)

(a) Find the singularities of (o)
larity, pole, essential singularity). If a pole, compute the order of the pole.

Solution: This function is singular when sin(z) = 0, in other words when z = nr.
Because cos(z) is nonozero at those values and sin(z) has a zero of order 1 (sin(z) =
(z — nm) + ...), or the first derivative of sin(z) at these zeroes is nonzero), we find
that

(b) Compute the residue of Zf]:((j)) at z = 0.

Solution: Because the leading order term of sin(z) at z = 0 is z, and cos(0) = 1,
we find that the residue of this function at z = 0 is 1.

. State the type of singularity (removable singu-

z
z




(7) (15 points)
Use residues to compute the integral

o dx
/OO (22 +1)(22+9)

Solution: Complete the contour to a semicircle with radius R. Then

/_oo - 16)@2 5 + A f(2)dz = 2mi)Res,—; f(2) + Res,—3; f(2).

The residues are

Res.—if(2) = 1/(2i))(8)
Res,_3if(z) = 1/6i(—7)
The contour integral is
2z = Re"
Reidf
(R?e%9 + 1)(R2e2% + 9)
The absolute value of this is less than

Rdf
/ (R? = 1)(R* = 9)

which tends to 0 as B — oo.
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