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Assigment 1

1. A number z = x + iy in the complex plane can be written in polar
coordinates as

z = reiθ

where r ≥ 0 is a real number r =
√
x2 + y2 and eiθ = cos(θ) + i sin(θ)

where cos(θ) = x/r and sin(θ) = y/r.

The equation zn = 1 has n roots: these are

z = e2πim/n

where m = 0, . . . , n− 1.

2. The complex conjugate of z is z̄ = x− iy.

3. The modulus of z is |z| =
√
x2 + y2.

4. The logarithm of a complex number z = reiθ is

[Log(z)] = {log(r) + iθ : θ ∈ [Arg(z)]}

where the argument of z is

[Arg(reiθ)] = {θ + 2πn} for n = 0,±1,±2, . . .
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1. A complex-valued function f is differentiable at z if

df

dz
(z) = lim

h→0

f (z + h)− f (z)
h

exists.

Here, the limit is taken as the complex number h tends to zero. If one
considers h tending to zero along a fixed direction in the complex plane
(in other words h = reiθ where r → 0 but θ remains constant) the limit
must give the same value regardless of the value of the angle θ.

2. A complex valued function f is holomorphic at z0 if f is differentiable
at all z in an open set containing z0.

3. If a function f(z) = u(x, y) + iv(x, y) is differentiable at z, then it

satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
;
∂v

∂x
= −∂u

∂y
.

WARNING: it is not true that IF a function satisfies the Cauchy-
Riemann equations THEN it is differentiable at z0. What is true is:

Theorem: If f(z) = u(x, y) + iv(x, y) satisfies the Cauchy-Riemann
equations and the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y exist
in a neighbourhood of z0 and are continuous at z0, then f is differen-
tiable at z0.

4. Conditions showing that a function is holomorphic:

(a) f(z) = z is holomorphic

(b) if f and g are holomorphic, so is fg

(c) if f and g are holomorphic and g(z) 6= 0, then f/g is holomorphic
at z

(d) if f and g are holomorphic then the composition f(g(z)) is a holo-
morphic function of z (using the Chain Rule for complex func-
tions)
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(e) A complex power series

f(z) =
∞∑
n=0

cn(z − a)n

defines a holomorphic function inside its radius of convergence.
Furthermore, the function obtained by differentiating a complex
power series term by term

g(z) =
∞∑
n=0

ncn(z − a)n−1

has the same radius of convergence as the power series for f , and
equals the derivative f ′(z).

5. Examples of holomorphic functions:

(a) polynomials

(b) the exponential function f(z) = ez, defined by

ez =
∞∑
n=0

zn/n!

(this series converges for all values of z)

(c) trigonometric functions

cos(z) = (eiz + e−iz)/2

and
sin(z) = (eiz − e−iz)/(2i)

Assignment 2

1. Contour integrals along a path γ : [a, b]→ C in the complex plane with

parameter interval [a, b] are defined by

∫
γ
f (z)dz =

∫ b
a
f (γ(t))

dγ

dt
dt.
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2. Integrals along a path are independent of the parametrization of the
path.

3. The Fundamental Theorem of Calculus asserts that if F is defined on
an open set containing a path γ with parameter interval [a, b] and the
derivative F ′(z) exists and is continuous at every point of γ, then∫

γ
F ′(z)dz = F (γ(b))− F (γ(a)).

4. ∫
γ
zndz = 0 if n 6= −1; = 2πi if n = −1.

5. Estimation Theorem: If γ is a path with parameter interval [a, b]
and the function f is continuous on γ, then∣∣∣∣∣

∫
γ
f(z)dz

∣∣∣∣∣ ≤
∫ b

a
|f(γ(t))γ′(t)|dt.

6. Theorem on interchange of summation and integration: Sup-
pose that γ is a path and U, u0, u1, . . . are continuous complex-valued
functions on γ and

∑∞
k=0 uk(z) converges to U(z) for all z in γ, and

|uk(z)| ≤Mk for some Mk with
∑∞
k=0Mk <∞. Then

∞∑
k=0

∫
γ
uk(z)dz =

∫
γ

( ∞∑
k=0

uk(z)

)
dz =

∫
γ
U(z)dz.

7. Region: A region is a connected open set.

8. Homotopy: two curves are homotopic in a region G if one can be
deformed into the other while staying entirely within G.

9. Simply connected: A region G is simply connected if every closed
path can be deformed to a point, while staying entirely in G.

10. Jordan curve theorem: Every closed path γ in the complex plane
separates the plane into an inside I(γ) which is bounded and an outside
O(γ) which is unbounded.
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11. Indefinite Integral Theorem: Let f be a continuous complex valued
function on a convex region G, with the property that the integral of
f around any triangle in G is 0. Then there is a holomorphic function
F for which

F ′ = f.

12. Antiderivative Theorem: A holomorphic function f on a convex
region has an antiderivative (in other words a function F for which
F ′ = f).

13. Cauchy’s theorem: If f is holomorphic inside and on a closed contour
γ, then

∫
γ f(z)dz = 0.

14. Deformtion theorem: If γ is a positively oriented contour and f is
holomorphic inside and on γ (except possibly at z = a), then∫

γ
f(z)dz =

∫
γ(a;r)

f(z)dz

where a is a point inside γ and γ(a; r) is the circular contour with centre
a and radius r, for r so small that γ(a; r) lies inside γ

15. Logarithm: If G is any open region not containing 0, then the loga-
rithm can be defined as follows:

log(z)− log(a) =
∫
γ

1

w
dw,

where γ is a path with parameter interval [0, 1] contained entirely in G
with endpoints z = γ(1) and a = γ(0).

16. Winding number: The winding number of a closed path γ around a
point w is defined as

n(γ, w) =
1

2πi

∫
γ

1

z − w
dz.

Informally, this is the number of times γ winds around w. For example
the winding number of the counterclockwise unit circle around the point
w = 0 is n(γ, 0) = 1.
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Assignment 3

1. Cauchy’s integral formula

2. Taylor’s theorem

3. Zeroes of holomorphic functions

4. Identity theorem

5. Maximum modulus theorem

6. Liouville’s theorem

Assignment 4: Singularities

1. Laurent’s theorem

2. Singularities:

(a) Removable singularity

(b) Pole

(c) Essential singularity

i. isolated

ii. non-isolated

Assignment 5: Residues

i. Residue: If f is a meromorphic function then the residue of f
at a is the coefficient of 1/(z − a) in the Laurent series of f
at a. The residue of f at a is written as res{f(z); a}.

ii. Cauchy’s residue formula: If f is holomorphic inside and on
a positively oriented contour γ except for a finite number of
poles at a1, . . . , am inside γ, then

∫
γ
f(z)dz = 2πi

( m∑
k=1

res{f(z); ak}
)
.
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iii. Zero-pole theorem Let f be holomorphic inside and on a posi-
tively oriented contour γ except for P poles inside γ (counted
according to their orders). Let f be nonzero on γ and have
N zeros inside γ (counted according to their orders). Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = N − P.

iv. Rouché’s theorem Let f and g be holomorphic inside and on
a contour γ and suppose |f(z)| > |g(z)| on γ. Then f and
f + g have the same number of zeros inside γ.

v. Calculation of residues: If

f(z) =
g(z)

(z − a)m

for some positive integer m, where g is holomorphic at a, then

res{f(z); a} =
1

(m− 1)!
g(m−1)(a).

In particular, if f(z) = g(z)
(z−a) where g is holomorphic at a then

res{f(z); a} = g(a).

If

f(z) =
g(z)

h(z)

where g and h are holomorphic at a, where g(a) 6= 0, h(a) = 0
and h′(a) 6= 0 then

res{f(z); a} =
g(a)

h′(a)
.

vi. Estimation of integrals

A. Basic inequalities: If z1, . . . zn are any complex numbers,
then

B. |z1 + z2| ≤ |z1|+ |z2|
C. |z1 + . . .+ zn| ≤ |z1|+ . . .+ |zn|
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D. |z1 + z2| ≥
∣∣∣|z1| − |z2|∣∣∣

E. |z1 + . . .+ zn| ≥ |z1| − |z2| − . . .− |zn|
F. |z1| ≤ |z2| ⇐⇒ 1/|z1| ≥ 1/|z2|
G. If f is a continuous function on a path γ with parameter

interval [α, β] then∫
γ
f(z)dz ≤

∫ β

α

∣∣∣f(γ(t))γ′(t)
∣∣∣dt

H. Jordan’s inequality: If 0 < θ ≤ π/2, then

2

π
≤ sin θ

θ
≤ 1.

I. Large arc estimate: If γ is a circular arc γ(θ) = Reiθ (for
θ1 < θ < θ2) then

∣∣∣∫
γ
f(z)dz

∣∣∣ ≤ ∫ θ2

θ1

∣∣∣f(Reiθ)
∣∣∣Rdθ.

J. Small arc estimate: If f has a simple pole of residue b at
the point a and f is holomorphic on some punctured disc
around a (except at the point a), then letting

γε(θ) = a+ εeiθ

for θ1 ≤ θ ≤ θ2 (this is an arc of radius ε and centre a
that passes through the angles from θ1 to θ2) then

lim
ε→0

∫
γε
f(z)dz = ib(θ2 − θ1)

In particular if θ1 = 0 and θ2 = 2π then

lim
ε→0

∫
γε
f(z)dz = 2πib.

WARNING: this estimate can only be used if the pole at
a is a SIMPLE pole.

Assignment 5: Applications of Contour Integrals
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i. Integrals over the real line or the positive real axis:

Let f be a function on the real line, which extends to a
meromorphic function F on the upper half plane which has
no zeros or poles on the real line.

Complete the integral along the real line to a contour integral
by adding a semicircular contour of radius R.

A. The contour integral can now be evaluated by using
residues.

B. To compute the integral over the real line, one must show
that the integral around the semicircle of radius R tends
to 0 as R → ∞. (Use the basic inequalities in the last
part of chapter 7.)

C. Sometimes, care must be taken to choose an appropriate
function F whose restriction to the real line is f , in order
that the integral of F over the semicircle tends to 0 as
R→∞.

D. At times it is more convenient to compute the integral of
a complex valued function whose real part is the integral
we want. For example eiz = cos(z) + i sin(z), and its
behaviour on a semicircle at infinity makes it easier to use
the Large Arc Estimates than for either cos(z) or sin(z).

So to compute
∫∞
−∞

sin(x)
x

we would use contour integrals

to compute
∫∞
−∞

eix

x
, and then take the imaginary part.

ii. Integrals where the function has a pole along the real axis:
In this case it is necessary to modify the contour by cutting
out a small arc of radius ε around the pole. If the pole is a
simple pole, use the Small Arc Estimate to obtain the value
of the integral around the small arc in the limit as ε→ 0. If
the pole is not a simple pole, modify the function F so that
it has a simple pole at the point in question.

9


