MATC34 2013 Solutions to Assignment 3

L. 7= {]z —i| = 2}. So we need to compute [, g(2)dz where g(z) =
L The pole at z = 2i is inside 7, while that at z = —2;

z2+4 (z—2i)(2+24) "
is outside . So by the Cauchy integral formula, the integral is 27i f(24)

where f(z) = —l5;. Thus the integral is 2mif (2@) where
1
J2) = z4+ 20

Thus the integral is 22 = /2.

2. f(2) =sin?z, expand as ¥, ¢, 2"

1 gnijnyn 2m(—i)mem
- (S EE e S T )

=0 m>0
Only even m and n contribute; odd m and n cancel out. So

1 (& 22(—1)na2e
f(z):_2<z (2n)l — 2 >

n=0
The radius of convergence is co.

3. If there were a function f holomorphic on D(0; 1) for which f(1/n) =0
when n is even and f(1/n) = 1/n when n is odd, since the sequence
{1/2n : n = 1,2,3,...} has a limit point in the disc, by the identity
theorem the function must be zero everywhere. Thus it cannot take
the value 1/n at the point z, = 1/n when n is odd. So no such function
exists.

4. f holomorphic on D(0;1) Consider h(z) = f(—Zz) Claim h is holomor-
phic on D(0;1) Let f(z) = u+iv z = x + iy implies Z = & — iy and
—Z=—x+ 1.

So f(_g) = U(—l’,y) + ZU(—QI,y)
f(=2) =u(-z,y) —iv(=z,y) == Ul2,y) +iV(z,y)

—_



so U(z,y) = u(—z,y) and V(z,y) = —v(—z,y).
To show that h is holomorphic on D(0;1) it suffices to show that
(a) U and V satisfy the Cauchy-Riemann equations

(b) U and V have continuous first order partial derivatives with respect
to x and y

(b) follows because u and v have continuous first order partial deriva-
tives w.r.t. x and y

Proof of (a): Define u, = $“(z,y).

Thus

977 Y) = gyl ) = Tue(my).

oU(z,y) 0

T or %U’(_'r7y) = —U(—2,9).
oV(r,y) 0 B
ay - ayv( l‘,y) - Uy( 'Tay)
So since u, = u,, O0U/0x = 0V /0y.
oU(z,y) 0 _
ov._ 0

5 = o (—v(—=z,y)) = —v.(—2x,y).

So since uy = —v,,
oU(z,y)  OV(z,y)

dy ox
Thus (U, V) satisfy the Cauchy-Riemann equations.

Thus h is holomorphic.

Thus ¢g(2) = f(z) — f(—Z) is holomorphic. If f is real on the imaginary
axis, g(z) = 0 for z on the imaginary axis, so by the identity theorem
g(z) = 0for zin D(0;1). So u(z,y)+iv(z,y)—u(—=z,y)+iv(—z,y) =0
if and only if u(x,y) = u(—=z,y) and v(z,y) = —v(—=x,y), equating the
real and imaginary parts.



5. G={z: |Re(z)| <1land|Im(z)| <1}. fiscontinuous in the closure
of G (which is obtained by replacing < by < in the two inequalities
above). f is also holomorphic in G, and f(z) = 0 if Re(z) = 1. Define

g by
9(2z) = f(2)f(iz) f(—=2) f(—iz).

We can see that g(z) = 0 on the whole boundary of G. This is true
because:

e f(z) =0if Re(z) =1 (by definition)

e f(—z)=0if Re(—z) = 1, in other words if Re(z) = —1

e f(iz) = 0if Re(iz) = 1, in other words if Im(2z) =1 So f(iz) =0
if Im(2) =1

o f(—iz) =0if Re(—iz) =1so f(—iz) =0if Im(z) = -1

Thus by the Maximum Modulus Theorem, the maximum of |g| occurs
on the boundary of G, so g =0on G, and f =0 on G.

/ dz
gamma(0;1) (Z — a) (Z — b)

Case 1: If Ja] < 1,|b] < 1, both a and b lie inside the contour. By
Cauchy integral formula, the integral equals

1 1
m(b—a+a—b)

Case 2:If |a| < 1,]b] > 1 then

dz dz
/v(o;l) (z—a)(z—b) /7(0;1) = a)f(Z)

for f(z) = 5 = 2=,
(similar result if |a| > 1 and |b] < 1)

Case 3: If |a] > 1, |b] > 1 then the integral is 0.




