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(1) Find the Laurent expansion of

(z2 − 1)−2

valid
(a) for 0 < |z − 1| < 2

Solution: For 0 < |z − 1| < 2,

1

(z2 − 1)2
=

1

(z − 1)2((z − 1) + 2)2
=
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4(z − 1)2
(1 + (
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2
)))−2

Put w = z=1
2
.

Then, since 1
1+w

=
∑

∞

n=0(−1)nwn for |w| < 1,

d

dw
(1 + w)−1 = −(1 + w)−2 =

∞
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(−1)nnwn−1
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2
)2

=
∞
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2

)n−1
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(
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2
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=
∞
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(−1)n−1n(z − 1)n−3
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(b) for |z + 1| > 2
Solution: In this case

(z2 − 1)−2 =
1

(z + 1)2(z + 1− 2)2
=

1

(z + 1)4(1− 2
z+1

)2

=
1

(z + 1)4

∞
∑

n=1

(−1)nn

(

2
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)n

= −
∞
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(2) Find the principal part of the Laurent expansion of (ez − 1)−2

around 0.
Solution:

ez − 1 =
∞
∑

n=1

zn

n!
= z(1 + z/2 + z2/3! + . . . )

= z(1 + A(z))

where

A(z) =
∞
∑

n=2

zn−1

n!

So

(ez − 1)−2 =
1

z2

(

1

1 + A(z)

)2

and

1

1 + A(z)
= 1− A(z) + A(z)2 − . . .

so
(

1

1 + A(z)

)2

=

(

1

1 + w

)2

where w = A(z)

= −
d

dw

1

1 + w
= −

d

dw

∞
∑

n=0

(−1)nwn =
∞
∑

n=1

(−1)n−1nwn−1 = 1−2A(z)+O(z2)

So

(ez − 1)−2 =
1

z2
(

1− 2(z/2) +O(z2)
)

(We only need to include the z/2 term in A(z), since all other
terms in A(z) are of order z2 or higher, and likewise all terms
in A(z)m for m ≥ 2.)
So the principal part of (ez − 1)−2 is

1

z2
(1− z) =

1

z2
−

1

z
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(3) Find the principal part of ez−1
ez+1

around a = iπ.
Solution:

ez − 1

ez + 1
= 1−

2

ez + 1

ez = e(z−iπ)eiπ = −ez−iπ

Put w = z − iπ.
So

1− ew = −
∞
∑

n=1

wn/n! = −w(1 + A(w))

where A(w) is as defined in question 2. Hence

1

1− ew
= −

1

w(1 + A(w))

= −
1

w
(1− A(w) + A(w)2 − . . . )

So the principal part of this expression is the principal part
of − 2

1−ew
which equals 2

w
= 2

z−iπ
.

(4) Locate and classify the singularities of

f(z) =
eiz

(z2 + z + 1)2

Solution:
f is singular when z2+ z+1 = 0, in other words when z = w

or z = w̄, where w = e2πi/3.
eiz 6= 0 when z = w or z = w̄. So f has a pole of order 2

at w and a pole of order 2 at w̄. couLocate and classify the
singularities of

f(z) =
z sin z

cos(z)− 1
.

Solution:
f has a singularity when cos(z) = 1, or equivalently when

z = 2πn for n an integer.

cos(z) = cos(z − 2nπ)
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cos(z − 2nπ)− 1 =
∞
∑

n=1

(−1)n
(z − 2nπ)2n

(2n)!

= −(z − 2nπ)2/2 + higher order terms.

sin(z − 2nπ) = (z − 2nπ)− (z − 2nπ)3/3! + . . .

sin(z− 2nπ) has a simple zero at z = 2nπ. So when z = 0, f
has a removable singularity.
When z = 2nπ (n 6= 0), f has a simple pole.

(5) Locate and classify the singularities of f(z) = cosπz
(z−1) sinπz

Solution:
f is singular when z = 1 or sin πz = 0. When z = 1, cos πz 6=

0 but sin πz = 0. Hence sin πz has a zero of order 1 at z = 1
since sin πz = − sin π(z − 1) and sin(w) = w − w3/3! + . . . g
where each term in the Taylor expansion of sin(w) has at

least one factor of w.
Hence 1

sinπz
has a pole of order 1 at z = 1, and cosπz

(z−1) sinπz
has

a pole of order 2 at z = 1.
When n is an integer, sin πz has a zero of order 1 at z = n.
When z = n, cos πz 6= 0. So f has a pole of order 1 at z = n

when n 6= 1.
(6) Locate and classify the singularities of

f(z) =
z sin z

cos(z)− 1

Solution:
f has a singularity when cos(z) = 1, or equivalently when

z = 2πn for n an integer.

cos(z) = cos(z − 2πn)

cos(z − 2πn)− 1 =
∞
∑

m=1

(−1)m
(z − 2πn)2m

(2m)!

This equals −(z − 2πn)2/2 + higher order terms.

sin(z − 2πn) = (z − 2πn)− (z − 2πn)3/3! + . . .

The function sin(z − 2nπ) has a zero of order 1 at z = 2πn. So
when z = 0, f has a removable singularity.
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When z = 2πn, f has a pole of order 1.
(7) Locate and classify the singularities, including singularities at

∞, of f(z) = tan2(z).
Solution:

f(z) =
sin2(z)

cos2(z)

f is singular when cos(z) = 0 or equivalently z = π/2 + nπ.
At these values, sin(z) 6= 0 and cos(z) has a simple zero since

cos(z) = sin(π/2− z).
So f has a pole of order 2 at z = π/2 + nπ.
Behaviour at z = ∞: Set z = 1/w.
Define

f(z) = f̃(w) =
sin2(1/w)

cos2(1/w)
.

In any neighbourhood of w = 0 there are infinitely many
values of w where cos(1/w) = 0 and sin(1/w) 6= 0. Thus z = ∞
is an essential singularity of f .

(8) Locate and classify the singularities (including singularities at
∞) of f(z) = cosh2(1/z).
Solution: f is not singular unless z = 0 or z = ∞.
At z = 0 there is an isolated essential singularity because

cosh2(w) = (ew + e−w)2 = e2w + e−2w + 2 =
∞
∑

n=0

2(
∞
∑

n=0

w2n/(2n)! + 2

so

cosh2(1/z) = 2
∞
∑

n=0

z−2n/(2n)! + 2

This has infinitely many negative terms, so an isolated essential
singularity. at 0.
At z = ∞, put z = 1/w wo w is in a neighbourhood of 0.

f(z) = cosh2(w)

so f is smooth at ∞ (and f(w) 6= 0 when w = 0


