
CSC B36 Additional Notes
proving a set of connectives complete, and not complete

c© Nick Cheng

⋆ Introduction

For this course, you are expected to formally prove that a given set of boolean connectives is complete.
You are also expected to prove that a given set of connectives is not complete. These notes provide a guide
to proving completeness and incompleteness for a set of connectives.

First . . . some definitions . . .

◦ Boolean functions

Given an integer n > 0, a boolean function (of n inputs) is a function that takes n binary values as input
and returns one binary value as output. I.e., the function maps from {0, 1}n to {0, 1}. For example, the
Agreement function, defined by

Agreement(x, y, z) =

{

1 if x = y = z;
0 otherwise,

takes 3 binary values as input, and returns 1 if all 3 input values are equal, and returns 0 if the input
values are not all the same.

◦ Representing a boolean function

A propositional formula F with propositional variables x1, · · · , xn is said to represent a boolean function
f of n inputs iff

for any truth assignment τ ,
τ satisfies F whenever f(τ(x1), · · · , τ(xn)) = 1, and
τ falsifies F whenever f(τ(x1), · · · , τ(xn)) = 0.

Notice that logically equivalent formulas always represent the same boolean function.

◦ Completeness for a set of connectives

A set C of connectives is said to be complete iff every boolean function can be represented by a propositional
formula that uses only connectives in C. From the course notes, we have {¬,∧} and {¬,∨} as examples
of complete sets.

Note:

Any formula that uses no connectives at all also uses only connectives in any set of connectives.
E.g., the formula x uses only connectives in {∧,∨}.

Abbreviation:

We use uoc as an abbreviation for uses only connectives in.
E.g., “F uoc C” means “F uses only connectives in C”.

⋆ Proving a set C is complete

To prove that a set C of connectives is complete, we start with a known complete set B of connectives.1

Then we prove that

1For this courses, usually the only sets of connectives that we can assume to be complete are {¬,∧} and {¬,∨}.

CSC B36 proving a set of connectives complete, and not complete Page 1 of 4



for every formula F that uoc B, there exists a formula F ′ such that
F ′ uoc C and F ′ leqv F .

Given any boolean function f , since B is complete, f can be represented by some formula, say F , that
uoc B. Then by what we proved, there is some formula F ′ such that F ′ uoc C and F ′ leqv F . Therefore
every boolean function can be represented by some formula that uoc C as wanted.

Here are the steps to formally prove that a set C is complete.

1. Use structural induction to define the set G that uoc {¬,∧} or {¬,∨} (the choice is yours; either is
acceptable).

2. Use structural induction to prove that for every formula F ∈ G, there exists a formula F ′ such that
F ′ uoc C and F ′ leqv F .

3. Our result follows from the fact that {¬,∧} (or {¬,∨} if you chose it) is complete.

◦ Example of a proof that a set is complete

Consider the unary connective 0, where 0P is always falsified, regardless of whether P is satisfied or falsified.

Here is a proof that {0,→} is complete.

[step 1]
We define the set G of formulas that uoc {¬,∨}.

Let G be the smallest set such that
Basis: If x is a propositional variable, then x ∈ G.
Induction Step: If F1, F2 ∈ G, then ¬F1, (F1 ∨ F2) ∈ G.

[step 2]
Now we prove that for every formula F ∈ G, there exists a formula F ′ such that

F ′ uoc {0,→} and F ′ leqv F .

Basis: Let F = x, where x is a propositional variable.
Now consider F ′ = x.
Then F ′ uoc {0,→} [F ′ uses no connectives at all]
and F ′ leqv F [F ′ = F ]
as wanted.

Induction Step: Let F1, F2 ∈ G.
Suppose there are formulas F ′

1
and F ′

2
such that

F ′

1
and F ′

2
uoc {0,→} and F ′

1
leqv F1 and F ′

2
leqv F2. [IH]

There are two cases to consider: F = ¬F1 and F = (F1 ∨ F2).

Case 1: For F = ¬F1, let F
′ = (F ′

1
→ 0F ′

1
).

Then F ′ uoc {0,→} [by IH, F ′

1
uoc {0,→}]

and F ′ = (F ′

1
→ 0F ′

1
)

leqv (F1 → 0F1) [by IH, F ′

1
leqv F1]

leqv ¬F1 [0F1 is always falsified, so
(F1 → 0F1) is satisfied exactly when F1 is falsified]

= F

as wanted.

CSC B36 proving a set of connectives complete, and not complete Page 2 of 4



Case 2: For F = (F1 ∨ F2), let F
′ = ((F ′

1
→ 0F ′

1
) → F ′

2
).

Then F ′ uoc {0,→} [by IH, F ′

1
and F ′

2
uoc {0,→}]

and F ′ = ((F ′

1
→ 0F ′

1
) → F ′

2
)

leqv ((F1 → 0F1) → F2) [by IH, F ′

1
leqv F1 and F ′

2
leqv F2]

leqv (¬F1 → F2) [by case 1, ¬F1 leqv (F1 → 0F1)]
leqv (¬¬F1 ∨ F2) [→ law]
leqv (F1 ∨ F2) [double negation]
= F

as wanted. �

[step 3]
Since {¬,∨} is complete, therefore {0,→} is also complete. �

◦ Informally proving a set C is complete

The main ideas behind the above proof are that ¬F leqv (F → 0F ) and F1∨F2 leqv ((F1 → 0F1) → F2).

In general, an informal proof that a set C is complete consists of showing how each connective in {¬,∨}
(or in {¬,∧}) can be expressed equivalently in terms of the connectives in C.

⋆ Proving a set C is not complete

To prove that a set C of connectives is not complete, we start by finding a property (expressed as a pred-
icate) that every formula that uoc C has, but not every formula in general. Then we prove that every
formula that uoc C has the desired property. Finally, we give a specific formula F for which our property
does not hold (by necessity, this F must use some connective that is not in C). Since every formula that
uoc C must have the property, so no formula that uoc C represents the boolean function represented by
F . Therefore C is not complete.

Here then are the steps to formally prove that a set C is not complete.

1. Use structural induction to define the set H of formulas that uoc C.

2. Define a predicate P (F ) that holds for every F ∈ H, but not in general.

3. Use structural induction to prove that P (F ) holds for every formula F ∈ H.

4. Give a specific formula F and show that P (F ) does not hold.
Then our result follows as argued above.

◦ Example of a proof that a set is not complete

Consider the unary connective 1, where 1P is always satisfied, regardless of whether P is satisfied or falsified.

Here is a proof that {1,→} is not complete.

[step 1]
We define the set H of formulas that uoc {1,→}.

Let H be the smallest set such that
Basis: If x is a propositional variable, then x ∈ H.
Induction Step: If F1, F2 ∈ H, then 1F1, (F1 → F2) ∈ H.

CSC B36 proving a set of connectives complete, and not complete Page 3 of 4



[step 2]
For a formula F , we define predicate P (F ) as follows.

P (F ): τ∗
1
(F ) = 1,

where τ1 is the truth assignment that assigns 1 to every variable.
In other words, P (F ) says F is satisfied whenever all its variables are assigned True.

[step 3]
We prove that P (F ) holds for every F ∈ H.

Basis: Let F = x, where x is a propositional variable.
Then τ∗

1
(F ) = τ∗

1
(x) [F = x]

= τ1(x) [definition of τ∗
1
with argument x]

= 1 [definition of τ1]
as wanted.

Induction Step: Let F1, F2 ∈ H.
Suppose P (F1) and P (F2). [IH]
I.e., τ1 satisfies both F1 and F2.

There are two cases to consider: F = 1F1 and F = (F1 → F2).

Case 1: For F = 1F1, we have
τ∗
1
(F ) = τ∗

1
(1F1) [F = 1F1]

= 1 [1F1 is always satisfied]
as wanted.

Aside: IH was not used here. All steps are valid, even if τ1 were any other truth assignment.

Case 2: For F = (F1 → F2), we have
τ∗
1
(F ) = τ∗

1
(F1 → F2) [F = (F1 → F2)]

= 1 [by IH, τ1 satisfies F2; so τ1 also satisfies (F1 → F2)]
as wanted. �

[step 4]
Now consider the formula F = ¬x.

Then τ∗
1
(F ) = τ∗

1
(¬x) [F = ¬x]

= 0. [τ1 satisfies x; so τ1 falsifies ¬x]

Thus P (F ) does not hold.

Therefore {1,→} is not complete. �

◦ Informally proving a set C is not complete

The main ideas behind the above proof lie in finding the predicate P (F ) and the specific formula F = ¬x.

In general, an informal proof that a set C is not complete consists of doing steps 2 and 4.

CSC B36 proving a set of connectives complete, and not complete Page 4 of 4


