CSC B36 Additional Notes proving languages **not** regular using Pumping Lemma

© Nick Cheng

* Introduction

The Pumping Lemma is used for proving that a language is **not** regular. Here is the Pumping Lemma.

If L is a regular language, then there is an integer n > 0 with the property that:

- (*) for any string $x \in L$ where $|x| \ge n$, there are strings u, v, w such that
 - (i) x = uvw,
 - (ii) $v \neq \epsilon$,
 - (iii) $|uv| \leq n$,
 - (iv) $uv^k w \in L$ for all $k \in \mathbb{N}$.

To prove that a language L is **not** regular, we use proof by contradiction. Here are the steps.

- 1. Suppose that L is regular.
- 2. Since L is regular, we apply the Pumping Lemma and assert the existence of a number n > 0 that satisfies the property (*).
- 3. Give a particular string x such that
 - (a) $x \in L$,
 - (b) $|x| \ge n$.

This the trickiest part. A wrong choice here will make step 4 impossible.

4. By Pumping Lemma, there are strings u, v, w such that (i)-(iv) hold. Pick a particular number $k \in \mathbb{N}$ and argue that $uv^k w \notin L$, thus yielding our desired contradiction.

What follows are two example proofs using Pumping Lemma.

* A (relatively) easy example

Let $L = \{0^k 1^k : k \in \mathbb{N}\}$. We prove that L is not regular.

[step 1]

By way of contradiction, suppose L is regular.

[step 2]

Let n be as in the Pumping Lemma.

[step 3]

Let $x = 0^n 1^n$.

Then $x \in L$ [definition of L]

and $|x| = 2n \ge n$.

[step 4]

By Pumping Lemma, there are strings u, v, w such that

- (i) x = uvw,
- (ii) $v \neq \epsilon$,
- (iii) $|uv| \leq n$,
- (iv) $uv^k w \in L$ for all $k \in \mathbb{N}$.

Let y be the prefix of x with length n. I.e., y is the first n symbols of x.

By our choice of x, $y = 0^n$.

By (i) and (iii), $uv = 0^j$ for some $j \in \mathbb{N}$ with $0 \le j \le n$.

Combining with (ii), $v = 0^j$ for some $j \in \mathbb{N}$ with $0 < j \le n$.

By (iv),
$$uv^2w \in L$$
. (#)

Aside: We are picking k = 2. Indeed, any $k \neq 1$ will do here.

However, $uv^2w = uvvw$

$$=0^{n+j}1^n$$

$$\not\in L$$
, [definition of L ; since $j > 0$, $n + j \neq n$]

which contradicts (#).

Therefore L is not regular. \square

* A harder example

Let $L = \{(10)^p 1^q : p, q \in \mathbb{N}, p \ge q\}$. We prove that L is not regular.

[step 1]

By way of contradiction, suppose L is regular.

[step 2]

Let n be as in the Pumping Lemma.

[step 3]

Let $x = (10)^n 1^n$.

Then $x \in L$ [definition of L]

and $|x| = 3n \ge n$.

[step 4]

By Pumping Lemma, there are strings u, v, w such that

- (i) x = uvw,
- (ii) $v \neq \epsilon$,
- (iii) $|uv| \leq n$,
- (iv) $uv^k w \in L$ for all $k \in \mathbb{N}$.

Let y be the prefix of x with length n.

By our choice of x, $y = (10)^{\frac{n}{2}}$ if n is even, and $y = (10)^{\frac{n-1}{2}} 1$ if n is odd.

By (i) and (iii), uv is a prefix of y, and

 $uv = (10)^j$ for some $j \in \mathbb{N}$ with $0 \le j \le \frac{n}{2}$, or

 $uv = (10)^{j}1$ for some $j \in \mathbb{N}$ with $0 \le j < \frac{n}{2}$.

Combining with (ii) — depending on whether |uv| is even or odd,

v is some nonempty substring of $(10)^j$ for some j where $0 \le j \le \frac{n}{2}$, or

v is some nonempty substring of $(10)^{j}1$ for some j where $0 \le j < \frac{n}{2}$.

There are 3 cases to consider:

- (a) v starts with 0 and ends with 0.
- (b) v starts with 1 and ends with 1.
- (c) v starts and ends with different symbols.

For case (a), $uv^0w = uw$ contains 110 as a substring.

Thus $uv^0w \notin L$, [110 is not a substring of any string in L] which contradicts (iv).

For case (b), there are two possibilities: uv^0w contains 00 as a substring or uv^0w begins with 0. Either one contradicts (iv). [details left to reader]

For case (c), $v = (10)^i$ or $v = (01)^i$, where 0 < i.

So |v| = 2i.

Thus $uv^0w = uw = (10)^{n-i}1^n \notin L$, [definition of L; n-i < n]

which contradicts (iv).

We reach a contradiction in all cases.

Therefore L is not regular. \square