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© Nick Cheng

⋆ Introduction

We present examples of induction proofs here in hope that they can be used as models when you write
your own proofs. These include simple, complete and structural induction. We also present a proof using
the Principle of Well-Ordering, and two pretend1 induction proofs.

⋆ A Simple Induction Proof

Problem:

Prove that for all natural numbers n > 4, 2n > n2.

Solution:

Base Case: Let n = 5.
Then 2n = 25 = 32 and n2 = 52 = 25.
So 2n > n2 as wanted.

Induction Step: Let n ≥ 5.
Suppose 2n > n2. [IH]
WTP: 2n+1 > (n+ 1)2.

2n+1 = 2 · 2n
= 2n + 2n

> n2 + n2 [IH (twice)]
≥ n2 + 5n [since n ≥ 5, n2 = n · n ≥ 5n]
> n2 + 2n+ 1 [since 5n = 2n+ 3n > 2n+ 1]
= (n+ 1)2

as wanted. �

1
Pretend induction is a term invented by yours truly, and used only in this course when I teach it. Searching for any

literature on it is not recommended.
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⋆ A Complete Induction Proof

Problem:

Consider the function f : N → N defined recursively as follows.

f(n) =

{

n if 0 ≤ n ≤ 2;
3f(n− 2) + 2f(n− 3) if n > 2.

Prove that f(n) < 2n for all n ∈ N.

Solution:

Base Cases: Consider cases where 0 ≤ n ≤ 2.
If n = 0,
then f(n) = 0 [definition of f ]

< 1 = 20 = 2n as wanted.

If n = 1,
then f(n) = 1 [definition of f ]

< 2 = 21 = 2n as wanted.

If n = 2,
then f(n) = 2 [definition of f ]

< 4 = 22 = 2n as wanted.

Induction Step:

Let n > 2.
Suppose f(j) < 2j whenever 0 ≤ j < n. [IH]
WTP: f(n) < 2n.

f(n) = 3f(n− 2) + 2f(n− 3) [definition of f ; n > 2]
< 3 · 2n−2 + 2 · 2n−3 [IH; 0 ≤ n− 3 < n− 2 < n]
= 6 · 2n−3 + 2 · 2n−3 [express using common term 2n−3]
= 8 · 2n−3

= 2n

as wanted. �
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⋆ A Structural Induction Proof

Definition for problem:

Given n,m ∈ Z, we say that n divides m, denoted n|m, iff there is some k ∈ Z such that m = kn.

Problem:

Let a, b, c ∈ Z with c|a and c|b. We use structural induction to define G, which is a set of ordered pairs of
integers. I.e., G ⊆ Z

2.

Let G be the smallest set such that
Basis: (a, b) ∈ G.
Induction Step: If (u, v) ∈ G, then (u, v − u) ∈ G and (u− v, v) ∈ G.

Prove that for any (x, y) ∈ G, c|x and c|y.
Loosely speaking, if we start with a pair of integers (a, b) that are divisible by c, then any other pair that
can be generated by using the induction step above as many times as we want are also divisible by c. This
result is useful in proving correctness of Euclid’s algorithm for finding the gcd (greatest common divisor)
of two numbers. Do you see how?

Solution:

Base Case: Let (x, y) = (a, b).
Then c|x and c|y [since we are given c|a and c|b] as wanted.

Induction Step: Let (x, y) ∈ G.
Suppose c|x and c|y (i.e., there are i, j ∈ Z such that x = ic and y = jc). [IH]
WTP: For any (x′, y′) that can be constructed from (x, y) using one induction step, c|x′ and c|y′.
We have two cases: (x′, y′) = (x, y − x) and (x′, y′) = (x− y, y).

For (x′, y′) = (x, y − x), let i′ = i and j′ = j − i.
Since i, j ∈ Z, we have i′, j′ ∈ Z.
Also, x′ = x

= ic [IH]
= i′c

and y′ = y − x

= jc − ic [IH]
= (j − i)c
= j′c.

Thus c|x′ and c|y′ as wanted.
For (x′, y′) = (x− y, y), let i′ = i− j and j′ = j.
Since i, j ∈ Z, we have i′, j′ ∈ Z.
Also, x′ = x− y

= ic− jc [IH]
= (i− j)c
= i′c

and y′ = y

= jc [IH]
= j′c.

Thus c|x′ and c|y′ as wanted. �
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⋆ A Principle of Well-Ordering (PWO) Proof

Definitions for problem:

A sequence of numbers b0, b1, b2, · · · is said to be bounded above iff there is some B ∈ N such that bi ≤ B

for any i where bi is defined. In this case, B is said to be an upper bound of the sequence.

A sequence of numbers b0, b1, b2, · · · is said to be increasing iff bi < bi+1 for any i where both bi and bi+1

are defined.

Problem:

Prove that every bounded (above) increasing sequence of natural numbers is finite.

Solution:

Let b0, b1, b2, · · · be a bounded (above) increasing sequence of natural numbers.
Let U be an upper bound of our sequence. So U ∈ N.

By way of contradiction, suppose the sequence b0, b1, b2, · · · is infinite.
Consider the set A defined by

A = {n : n = U − bi for some i ∈ N} (i.e., A is the set of all numbers of form U − bi).

A ⊆ N because each bi ≤ U .
Also, A is nonempty because U − b0 ∈ A.
Thus by PWO, A has a minimum element.

Let m be a minimum element of A.
Then m = U − bj for some j ∈ N.

Now consider m′ = U − bj+1.
By definition of A, we have m′ ∈ A.
Also, m′ = U − bj+1

< U − bj [since sequence is increasing, bj+1 > bj ]
= m.

Thus m′ < m, which contradicts m being a minimum element of A.
Therefore the sequence b0, b1, b2, · · · is finite. �
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⋆ A Pretend (complete) Induction Proof

Problem:

Consider the following inductively defined function.

f(n) =

{

n if 1 ≤ n ≤ 2;
2f(

⌊

n
2

⌋

) + ⌊√n⌋ if n > 2.

Find positive constants c and d so that f(n) ≤ cn− d
√
n for all integers n ≥ 1.

Solution:

We use pretend induction.

Base Cases: Consider cases n = 1 and n = 2.
If n = 1,
then f(n) = 1 [definition of f ]
and cn− d

√
n = c− d.

So we need 1 ≤ c− d. (*)

If n = 2,
then f(n) = 2 [definition of f ]

and cn− d
√
n = 2c−

√
2d.

So we need 2 ≤ 2c−
√
2d. (**)

Since (*) implies (**), we just need 1 ≤ c− d, or equivalently,
c ≥ d+ 1. (#)

Induction Step: Let n > 2.
Suppose f(j) ≤ cj − d

√
j whenever 1 ≤ j < n. [IH]

WTP: f(n) ≤ cn− d
√
n.

f(n) = 2f(
⌊

n
2

⌋

) + ⌊√n⌋ [definition of f ; n > 2]

≤ 2
(

c
⌊

n
2

⌋

− d

√

⌊

n
2

⌋

)

+ ⌊√n⌋ [IH; 1 ≤
⌊

n
2

⌋

< n if n > 2]

≤ 2cn2 − 2d
√

n−1
2 +

√
n [ n−1

2 ≤
⌊

n
2

⌋

≤ n
2 ; ⌊

√
n⌋ ≤ √

n ]

= cn−
√

2(n − 1)d+
√
n [simplify]

So to get f(n) ≤ cn− d
√
n, we need

cn−
√

2(n− 1)d+
√
n ≤ cn− d

√
n. (***)

Subtracting cn from both sides and isolating d, (***) becomes

d ≥
√
n√

2(n−1)−
√
n
,

and this must be true for all n > 2 (so the induction would work).

Therefore we need d ≥ max
n>2

{ √
n√

2(n−1)−
√
n

}

=
√
3

2−
√
3

[maximum occurs at n = 3]

≈ 6.464 · · · (##)

Finally, we choose c and d so that (#) and (##) are satisfied.
For example, we can pick d = 7 and c = 8. �
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⋆ A Pretend (simple) Induction Proof

This example is less complex than the previous one.

Problem:

Consider the following inductively defined function.

f(n) =

{

7 if n = 0;
2f(n− 1) + 3 if n > 0.

Find positive constants c and d so that f(n) ≤ c 2n − d for all n ∈ N.

Solution:

We use pretend induction.

Basis: Let n = 0.
Then f(n) = 7 [definition of f ] and c 2n − d = c− d.
We want f(n) ≤ c 2n − d.
So we need 7 ≤ c− d, or equivalently, c ≥ d+ 7. (*)

Induction Step: Let n ≥ 0.
Suppose f(n) ≤ c 2n − d. [IH]
WTP: f(n+ 1) ≤ c2n+1 − d.

f(n+ 1) = 2f(n) + 3 [definition of f ; n+ 1 > 0]
≤ 2(c 2n − d) + 3 [IH]
= c 2n+1 − 2d+ 3. [isolate c 2n+1 term]

We want f(n+ 1) ≤ c 2n+1 − d.
So we need c 2n+1 − 2d+ 3 ≤ c 2n+1 − d. (#)

Isolating d in (#), we get d ≥ 3. (**)

Finally, we choose c and d so that (*) and (**) are satisfied.
For example, we can pick d = 3 and c = 10. �
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